\qquad Date \qquad

Mole Conversions Worksheet

Working with Moles and Particles

There are three mole equalities. They are:

$$
\begin{aligned}
& 1 \mathrm{~mol}=6.02 \times 10^{23} \text { particles (atom, molecule or ion) } \\
& 1 \mathrm{~mol}=\text { gram formula mass of a substance } \\
& 1 \mathrm{~mol}=22.4 \mathrm{~L} \text { for a gas at STP }
\end{aligned}
$$

The equality for moles and particles can be written as a set of two conversion factors:

$$
\left(\frac{1 \text { mole }}{6.02 \times 10^{23} \text { particles }}\right) \quad \text { OR } \quad\left(\frac{6.02 \times 10^{23} \text { particles }}{1 \text { mole }}\right)
$$

Mole-Particle Conversion Calculations: Using the Factor-Label Method

1. How many moles of magnesium is 3.01×10^{22} atoms of magnesium?

When the units are set up properly, the unit you are converting FROM will cancel out.
2. How many molecules are there in 4.00 moles of glucose, $\mathrm{C}_{6} \mathrm{H}_{12} \mathrm{O}_{6}$?
4.00 moles $\left(\frac{6.02 \times 10^{23} \text { molecules }}{1 \text { mole }}\right)=2.41 \times 10^{24}$ molecules
3. How many moles are 1.20×10^{25} atoms of phosphorous?
4. How many atoms are in 0.750 moles of zinc?
5. How many molecules are in 0.400 moles of $\mathrm{N}_{2} \mathrm{O}_{5}$?
\qquad
\qquad
6. How many atoms are in 0.340 moles of sodium?
7. How many moles are in 1.204×10^{24} molecules of Bromine?
8. How many molecules are in 0.75 moles of oxygen gas?
9. How many moles are present in 2.45×10^{23} molecules of CH_{4} ?
10. How many moles are there in 3.4×10^{24} molecules of NH_{3} ?

Multi-Step Mixed Mole Conversions- Using the Factor Label Method and Moles Formula

Given unit \rightarrow Moles \rightarrow Desired unit

11. Find the mass in grams of 2.00×10^{23} molecules of F_{2}.

$$
2.00 \times 10^{23} \text { molecttes }\left(\frac{1 \text { mole }}{\mathbf{6 . 0 2 x 1 0}^{23} \text { partietes }}\right)=0.332 \text { moles } \mathrm{F}_{2}
$$

Gram-formula-mass $\mathrm{F}_{2}: \mathrm{F}: 2(19.0 \mathrm{~g})=38.0 \mathrm{~g} / \mathrm{mol}$; therefore 1 mole $\mathrm{F}_{2}=38.0 \mathrm{~g} \mathrm{~F} \mathrm{~F}_{2}$

$$
\begin{aligned}
\# \text { of moles }= & \begin{array}{l}
\text { given mass } \\
\text { gram formula mass }
\end{array}
\end{aligned} \quad \begin{aligned}
& ; \text { given mass }=(\# \text { of moles })(\text { gram formula mass }) \\
& \text { given mass }=(0.332 \text { moles })\left(38.0 \mathrm{~g} \mathrm{~F}_{2}\right)=12.616 \mathrm{~g} \mathrm{~F}_{2}
\end{aligned}
$$

\qquad
\qquad
12. Find the mass, in grams, of 1.00×10^{23} molecules of N_{2}.
13. How many particles are there in 1.43 g of a compound with a gram formula mass of 233 g ?
14. How many grams are there in 3.4×10^{24} molecules of NH_{3} ?
15. Aspartame is an artificial sweetener that is 160 times sweeter than sucrose (table sugar) when dissolved in water. It is marketed by G.D. Searle as Nutra Sweet. The molecular formula of aspartame is $\mathrm{C}_{14} \mathrm{H}_{18} \mathrm{~N}_{2} \mathrm{O}_{5}$.
a) Calculate the gram-formula-mass of aspartame.
b) How many molecules are in 10 g of aspartame?
c) What is the mass in grams of 1.56 moles of aspartame?
d) How many atoms of nitrogen are in 1 mole of aspartame?

